## Question

Asked By – Hangon

I would like to know if there is someway of replacing all DataFrame negative numbers by zeros?

**Now we will see solution for issue: How to replace negative numbers in Pandas Data Frame by zero **

## Answer

If all your columns are numeric, you can use boolean indexing:

```
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': [0, -1, 2], 'b': [-3, 2, 1]})
In [3]: df
Out[3]:
a b
0 0 -3
1 -1 2
2 2 1
In [4]: df[df < 0] = 0
In [5]: df
Out[5]:
a b
0 0 0
1 0 2
2 2 1
```

For the more general case, this answer shows the private method `_get_numeric_data`

:

```
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': [0, -1, 2], 'b': [-3, 2, 1],
'c': ['foo', 'goo', 'bar']})
In [3]: df
Out[3]:
a b c
0 0 -3 foo
1 -1 2 goo
2 2 1 bar
In [4]: num = df._get_numeric_data()
In [5]: num[num < 0] = 0
In [6]: df
Out[6]:
a b c
0 0 0 foo
1 0 2 goo
2 2 1 bar
```

With `timedelta`

type, boolean indexing seems to work on separate columns, but not on the whole dataframe. So you can do:

```
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': pd.to_timedelta([0, -1, 2], 'd'),
...: 'b': pd.to_timedelta([-3, 2, 1], 'd')})
In [3]: df
Out[3]:
a b
0 0 days -3 days
1 -1 days 2 days
2 2 days 1 days
In [4]: for k, v in df.iteritems():
...: v[v < 0] = 0
...:
In [5]: df
Out[5]:
a b
0 0 days 0 days
1 0 days 2 days
2 2 days 1 days
```

**Update:** comparison with a `pd.Timedelta`

works on the whole DataFrame:

```
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': pd.to_timedelta([0, -1, 2], 'd'),
...: 'b': pd.to_timedelta([-3, 2, 1], 'd')})
In [3]: df[df < pd.Timedelta(0)] = 0
In [4]: df
Out[4]:
a b
0 0 days 0 days
1 0 days 2 days
2 2 days 1 days
```

This question is answered By – Lev Levitsky

**This answer is collected from stackoverflow and reviewed by FixPython community admins, is licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0 **