Fix Python – extracting days from a numpy.timedelta64 value

Question

Asked By – user7289

I am using pandas/python and I have two date time series s1 and s2, that have been generated using the ‘to_datetime’ function on a field of the df containing dates/times.

When I subtract s1 from s2

s3 = s2 – s1

I get a series, s3, of type

timedelta64[ns]

0    385 days, 04:10:36
1     57 days, 22:54:00
2    642 days, 21:15:23
3    615 days, 00:55:44
4    160 days, 22:13:35
5    196 days, 23:06:49
6     23 days, 22:57:17
7      2 days, 22:17:31
8    622 days, 01:29:25
9     79 days, 20:15:14
10    23 days, 22:46:51
11   268 days, 19:23:04
12                  NaT
13                  NaT
14   583 days, 03:40:39

How do I look at 1 element of the series:

s3[10]

I get something like this:

numpy.timedelta64(2069211000000000,’ns’)

How do I extract days from s3 and maybe keep them as integers(not so interested in hours/mins etc.)?

Thanks in advance for any help.

Now we will see solution for issue: extracting days from a numpy.timedelta64 value


Answer

You can convert it to a timedelta with a day precision. To extract the integer value of days you divide it with a timedelta of one day.

>>> x = np.timedelta64(2069211000000000, 'ns')
>>> days = x.astype('timedelta64[D]')
>>> days / np.timedelta64(1, 'D')
23

Or, as @PhillipCloud suggested, just days.astype(int) since the timedelta is just a 64bit integer that is interpreted in various ways depending on the second parameter you passed in ('D', 'ns', …).

You can find more about it here.

This question is answered By – Viktor Kerkez

This answer is collected from stackoverflow and reviewed by FixPython community admins, is licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0