Fix Python – What does tf.nn.embedding_lookup function do?


Asked By – Poorya Pzm

tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None)

I cannot understand the duty of this function. Is it like a lookup table? Which means to return the parameters corresponding to each id (in ids)?

For instance, in the skip-gram model if we use tf.nn.embedding_lookup(embeddings, train_inputs), then for each train_input it finds the correspond embedding?

Now we will see solution for issue: What does tf.nn.embedding_lookup function do?


embedding_lookup function retrieves rows of the params tensor. The behavior is similar to using indexing with arrays in numpy. E.g.

matrix = np.random.random([1024, 64])  # 64-dimensional embeddings
ids = np.array([0, 5, 17, 33])
print matrix[ids]  # prints a matrix of shape [4, 64] 

params argument can be also a list of tensors in which case the ids will be distributed among the tensors. For example, given a list of 3 tensors [2, 64], the default behavior is that they will represent ids: [0, 3], [1, 4], [2, 5].

partition_strategy controls the way how the ids are distributed among the list. The partitioning is useful for larger scale problems when the matrix might be too large to keep in one piece.

This question is answered By – Rafał Józefowicz

This answer is collected from stackoverflow and reviewed by FixPython community admins, is licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0