Fix Python – How to change a dataframe column from String type to Double type in PySpark?


Asked By – Abhishek Choudhary

I have a dataframe with column as String.
I wanted to change the column type to Double type in PySpark.

Following is the way, I did:

toDoublefunc = UserDefinedFunction(lambda x: x,DoubleType())
changedTypedf = joindf.withColumn("label",toDoublefunc(joindf['show']))

Just wanted to know, is this the right way to do it as while running
through Logistic Regression, I am getting some error, so I wonder,
is this the reason for the trouble.

Now we will see solution for issue: How to change a dataframe column from String type to Double type in PySpark?


There is no need for an UDF here. Column already provides cast method with DataType instance :

from pyspark.sql.types import DoubleType

changedTypedf = joindf.withColumn("label", joindf["show"].cast(DoubleType()))

or short string:

changedTypedf = joindf.withColumn("label", joindf["show"].cast("double"))

where canonical string names (other variations can be supported as well) correspond to simpleString value. So for atomic types:

from pyspark.sql import types 

for t in ['BinaryType', 'BooleanType', 'ByteType', 'DateType', 
          'DecimalType', 'DoubleType', 'FloatType', 'IntegerType', 
           'LongType', 'ShortType', 'StringType', 'TimestampType']:
    print(f"{t}: {getattr(types, t)().simpleString()}")
BinaryType: binary
BooleanType: boolean
ByteType: tinyint
DateType: date
DecimalType: decimal(10,0)
DoubleType: double
FloatType: float
IntegerType: int
LongType: bigint
ShortType: smallint
StringType: string
TimestampType: timestamp

and for example complex types

types.MapType(types.StringType(), types.IntegerType()).simpleString()

This question is answered By – zero323

This answer is collected from stackoverflow and reviewed by FixPython community admins, is licensed under cc by-sa 2.5 , cc by-sa 3.0 and cc by-sa 4.0